Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biomed Pharmacother ; 141: 111922, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1309164

ABSTRACT

The Coronavirus disease 19 (Covid-19) pandemic is devastating the public health: it is urgent to find a viable therapy to reduce the multiorgan damage of the disease. A validated therapeutic protocol is still missing. The most severe forms of the disease are related to an exaggerated inflammatory response. The pivotal role of reactive oxygen species (ROS) in the amplification of inflammation makes the antioxidants a potential therapy, but clinical trials are needed. The lecitinized superoxide dismutase (PC-SOD) could represent a possibility because of bioaviability, safety, and its modulatory effect on the innate immune response in reducing the harmful consequences of oxidative stress. In this review we summarize the evidence on lecitinized superoxide dismutase in animal and human studies, to highlight the rationale for using the PC-SOD to treat COVID-19.


Subject(s)
COVID-19 Drug Treatment , Oxidative Stress/drug effects , Phosphatidylcholines/therapeutic use , Superoxide Dismutase/therapeutic use , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , COVID-19/diagnosis , COVID-19/metabolism , Humans , Multiple Organ Failure/diagnosis , Multiple Organ Failure/drug therapy , Multiple Organ Failure/metabolism , Oxidative Stress/physiology , Pandemics , Phosphatidylcholines/pharmacology , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Superoxide Dismutase/pharmacology
2.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: covidwho-1125259

ABSTRACT

Mitochondria are the largest source of reactive oxygen species (ROS) and are intracellular organelles that produce large amounts of the most potent hydroxyl radical (·OH). Molecular hydrogen (H2) can selectively eliminate ·OH generated inside of the mitochondria. Inflammation is induced by the release of proinflammatory cytokines produced by macrophages and neutrophils. However, an uncontrolled or exaggerated response often occurs, resulting in severe inflammation that can lead to acute or chronic inflammatory diseases. Recent studies have reported that ROS activate NLRP3 inflammasomes, and that this stimulation triggers the production of proinflammatory cytokines. It has been shown in literature that H2 can be based on the mechanisms that inhibit mitochondrial ROS. However, the ability for H2 to inhibit NLRP3 inflammasome activation via mitochondrial oxidation is poorly understood. In this review, we hypothesize a possible mechanism by which H2 inhibits mitochondrial oxidation. Medical applications of H2 may solve the problem of many chronic inflammation-based diseases, including coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19/therapy , Hydrogen/pharmacology , Hydrogen/therapeutic use , Inflammation/therapy , Mitochondria/physiology , Animals , Chronic Disease , Humans , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism
3.
Med Hypotheses ; 146: 110455, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-969218

ABSTRACT

SARS-CoV-2 infection generally begins in the respiratory tract where it can cause bilateral pneumonia. The disease can evolve into acute respiratory distress syndrome and multi-organ failure, due to viral spread in the blood and an excessive inflammatory reaction including cytokine storm. Antiviral and anti-cytokine drugs have proven to be poorly or in-effective in stopping disease progression, and mortality or serious chronic damage is common in severely ill cases. The low efficacy of antiviral drugs is probably due to late administration, when the virus has triggered the inflammatory reaction and is no longer the main protagonist. The relatively poor efficacy of anti-cytokine drugs is explained by the fact that they act on one or a few of the dozens of cytokines involved, and because other mediators of inflammation - reactive oxygen and nitrogen species - are not targeted. When produced in excess, reactive species cause extensive cell and tissue damage. The only drug known to inhibit the excessive production of reactive species and cytokines is methylene blue, a low-cost dye with antiseptic properties used effectively to treat malaria, urinary tract infections, septic shock, and methaemoglobinaemia. We propose testing methylene blue to contrast Covid-related acute respiratory distress syndrome, but particularly suggest testing it early in Covid infections to prevent the hyper-inflammatory reaction responsible for the serious complications of the disease.


Subject(s)
COVID-19 Drug Treatment , Methylene Blue/pharmacology , Models, Biological , Antiviral Agents/pharmacology , COVID-19/complications , COVID-19/physiopathology , Cytokines/antagonists & inhibitors , Endothelium, Vascular/drug effects , Endothelium, Vascular/injuries , Humans , Multiple Organ Failure/etiology , Multiple Organ Failure/prevention & control , Pandemics , Reactive Oxygen Species/antagonists & inhibitors , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/prevention & control , SARS-CoV-2 , Treatment Failure
4.
Nat Rev Immunol ; 20(9): 515-516, 2020 09.
Article in English | MEDLINE | ID: covidwho-690707
5.
Free Radic Biol Med ; 156: 190-199, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-641158

ABSTRACT

Studies have shown that infection, excessive coagulation, cytokine storm, leukopenia, lymphopenia, hypoxemia and oxidative stress have also been observed in critically ill Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) patients in addition to the onset symptoms. There are still no approved drugs or vaccines. Dietary supplements could possibly improve the patient's recovery. Omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), present an anti-inflammatory effect that could ameliorate some patients need for intensive care unit (ICU) admission. EPA and DHA replace arachidonic acid (ARA) in the phospholipid membranes. When oxidized by enzymes, EPA and DHA contribute to the synthesis of less inflammatory eicosanoids and specialized pro-resolving lipid mediators (SPMs), such as resolvins, maresins and protectins. This reduces inflammation. In contrast, some studies have reported that EPA and DHA can make cell membranes more susceptible to non-enzymatic oxidation mediated by reactive oxygen species, leading to the formation of potentially toxic oxidation products and increasing the oxidative stress. Although the inflammatory resolution improved by EPA and DHA could contribute to the recovery of patients infected with SARS-CoV-2, Omega-3 fatty acids supplementation cannot be recommended before randomized and controlled trials are carried out.


Subject(s)
Coronavirus Infections/diet therapy , Cytokine Release Syndrome/diet therapy , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Leukopenia/diet therapy , Pandemics , Pneumonia, Viral/diet therapy , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Cytokine Release Syndrome/epidemiology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/diet therapy , Disseminated Intravascular Coagulation/epidemiology , Disseminated Intravascular Coagulation/metabolism , Disseminated Intravascular Coagulation/virology , Humans , Hypoxia/diet therapy , Hypoxia/epidemiology , Hypoxia/metabolism , Hypoxia/virology , Leukopenia/epidemiology , Leukopenia/metabolism , Leukopenia/virology , Oxidative Stress , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , SARS-CoV-2
6.
Adv Biol Regul ; 77: 100741, 2020 08.
Article in English | MEDLINE | ID: covidwho-623932

ABSTRACT

Pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses an unprecedented challenge to healthcare systems due to the lack of a vaccine and specific treatment options. Accordingly, there is an urgent need to understand precisely the pathogenic mechanisms underlying this multifaceted disease. There is increasing evidence that the immune system reacts insufficiently to SARS-CoV-2 and thus contributes to organ damage and to lethality. In this review, we suggest that the overwhelming production of reactive oxygen species (ROS) resulting in oxidative stress is a major cause of local or systemic tissue damage that leads to severe COVID-19. It increases the formation of neutrophil extracellular traps (NETs) and suppresses the adaptive arm of the immune system, i.e. T cells that are necessary to kill virus-infected cells. This creates a vicious cycle that prevents a specific immune response against SARS-CoV-2. The key role of oxidative stress in the pathogenesis of severe COVID-19 implies that therapeutic counterbalancing of ROS by antioxidants such as vitamin C or NAC and/or by antagonizing ROS production by cells of the mononuclear phagocyte system (MPS) and neutrophil granulocytes and/or by blocking of TNF-α can prevent COVID-19 from becoming severe. Controlled clinical trials and preclinical models of COVID-19 are needed to evaluate this hypothesis.


Subject(s)
Antioxidants/therapeutic use , Coronavirus Infections/epidemiology , Extracellular Traps/immunology , Lymphopenia/epidemiology , Neutrophils/immunology , Pandemics , Pneumonia, Viral/epidemiology , Acetylcysteine/therapeutic use , Ascorbic Acid/therapeutic use , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/genetics , Cytokines/immunology , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/drug effects , Lymphopenia/drug therapy , Lymphopenia/immunology , Lymphopenia/virology , NF-kappa B/genetics , NF-kappa B/immunology , Neutrophils/drug effects , Neutrophils/virology , Oxidative Stress/drug effects , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , SARS-CoV-2 , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/virology
7.
Free Radic Biol Med ; 156: 107-112, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-620858

ABSTRACT

Ebselen is an organoselenium compound exhibiting hydroperoxide- and peroxynitrite-reducing activity, acting as a glutathione peroxidase and peroxiredoxin enzyme mimetic. Ebselen reacts with a multitude of protein thiols, forming a selenosulfide bond, which results in pleiotropic effects of antiviral, antibacterial and anti-inflammatory nature. The main protease (Mpro) of the corona virus SARS-CoV-2 is a potential drug target, and a screen with over 10,000 compounds identified ebselen as a particularly promising inhibitor of Mpro (Jin, Z. et al. (2020) Nature 582, 289-293). We discuss here the reaction of ebselen with cysteine proteases, the role of ebselen in infections with viruses and with other microorganisms. We also discuss effects of ebselen in lung inflammation. In further research on the inhibition of Mpro in SARS-CoV-2, ebselen can serve as a promising lead compound, if the inhibitory effect is confirmed in intact cells in vivo. Independently of this action, potential beneficial effects of ebselen in COVID-19 are ascribed to a number of targets critical to pathogenesis, such as attenuation of inflammatory oxidants and cytokines.


Subject(s)
Antioxidants/therapeutic use , Antiviral Agents/therapeutic use , Azoles/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Organoselenium Compounds/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , Viral Nonstructural Proteins/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Betacoronavirus/enzymology , Betacoronavirus/pathogenicity , Binding Sites , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Isoindoles , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Models, Molecular , Oxidative Stress/drug effects , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Protease Inhibitors/therapeutic use , Protein Binding , Protein Structure, Secondary , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL